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Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine.
Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue
engineering as well as bone therapy. Based on their different characteristics, 2D materials could function
in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engi-
neering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly
reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function
in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions
and application of 2D materials. At last, the outlook on how to further broaden applications of 2D mate-
rials in bone therapies based on their excellent properties is also discussed.
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1. Introduction

Two-dimensional (2D) materials are nanomaterials with a free-
standing sheet-like feature[1]. Usually, the lateral size can be as
large as from tens of nanometers to tens to micrometers or higher,
but the thickness, however, is ranged from only a few angstroms to
a few nanometers[2]. This feature results in a high ratio of their lat-
eral size to their thickness[3]. Nowadays, we have found a large
variety of 2D materials such as graphene and its derivatives includ-
ing graphene oxide (GO) and reduced GO (rGO), MXene, graphitic
carbon nitride (g-C3N4), black phosphorus (BP), black arsenic phos-
phorus (b-AsP), transition metal dichalcogenides (TMDCs), layered
double hydroxides (LDHs), hexagonal boron nitride (h-BN), and so
on[4–9].

Compared to their bulky parents, 2D materials have prominent
properties including excellent high specific surface area, optical
properties, ultrahigh carrier mobility, and high thermal conductiv-
ity, therefore, they are broadly employed in the field of optics
[10,11], photonic[12–14], energy storage[15,16], sensor[17], elec-
tronic[18,19], phototherapy[20] and theranostics[21], etc. because
of their unique planar structures. Besides, the remarkable physio-
chemical properties of 2D materials facilitated their applications
in biomedicine. It is becoming a more and more attractive field
for researchers. For instance, some 2D materials such as BP,
MoS2, WSe2, and h-BN, have a broad optical absorption range
due to their highly tunable band gap, which promotes their appli-
cations in biosensing, photoacoustic imaging, and photodynamic
therapy, etc.[22–27]. 2D materials with a high ON-OFF current
ratio are suitable to be applied as field-effect transistor-based
immunosensors with high sensitivity[28]. Furthermore, some 2D
materials with excellent electrical conduction are ideal candidates
for the detection of biomolecules with positive or negative charge
[29,30]; Some 2D materials show good biocompatibility and
biodegradability, which facilitates their application in biomedi-
cine[31,32]; What’s more, 2D materials could be integrated with
various photonic materials or be applied as a component of vertical
heterostructures[33] since their surfaces are naturally passivated
without any dangling bonds, providing an alternative method to
improve the biocompatibility, biodegradability or stability of some
2D materials and further developing the application of 2D materi-
als in biomedicine.

To date, some researchers had reviewed the application of 2D
materials in bone therapy, but most of them focused on the
application of 2D materials as a composite of the bio-scaffold for
bone tissue engineering (BTE) which is a method based on the stem
cells or bone cells, utilizing the admirable properties of 2D materi-
als to improve the mechanical properties, biocompatibility or
stability of the bio-scaffold and therefore promotes the stem cell
growth, attachment, and differentiation[34–37]. However, the
outstanding physicochemical properties of 2D materials are also
able to be employed in other bone therapies such as bone tumor
therapy[38], joint lubrication, antibacterial[39], and so on. Here,
we first comprehensively review the versatile applications of 2D
materials in different bone therapy and discuss their poten-
tial application in bone therapy in the future based on their
properties.
2

2. Popular 2D materials in biomedical application

2.1. Graphene and its derivatives

Graphene is the first 2D material and the single-layer graphene
was isolated from graphite in 2004 by Andre Geim and Nosovelov
[40]. Structurally, graphene presented as an almost transparently
single atomic sheet that consisted of sp2 carbon atoms crosslinked
in a honeycomb-like lattice. Graphene might be the strongest and
stiffest material though it is also the lightest and thinnest material
[41] with a thickness of<10 nm[42]. Besides, Graphene has a large
surface area which is about 2600m2g�1 and it is flexible. Because of
its structural characteristics, graphene possesses some excellent
properties, such as outstanding thermal and chemical stability,
high electron mobility, and large loading capacity. What’s more,
graphene is easy to be functionalized in both a covalent and non-
covalent style, which is a vital way for the application of graphene
in biomedicines. The covalent functionalization of graphene is
based on the reaction between its sp2 carbon atoms and radicals
including fluorine[43] and diazonium salts[44] etc. However,
non-covalent functionalization is usually involved in the formation
of Van der Waals forces, electrostatic interactions, or p-p interac-
tion[45] between graphene and functionalization reagents. And
the non-covalent functionalization of graphene is a common way
for promotion of its properties such as stability.

GO and rGO are two important derivatives of graphene. Gra-
phene could be oxidized to be an amphiphile graphene oxide
(GO) and GO could be further reduced and then leads to the pro-
duction of the reduced graphene oxide (rGO)[46]. Relative to gra-
phene and rGO, GO is more available to achieve functionalization
as it contains different kinds of functional groups including car-
boxyl, hydroxyl, and epoxy groups which are easy to bind various
biomolecules, broadening the bio-applications of graphene. Due to
the various properties and availability in functionalization, gra-
phene and its derivatives could be applied in various fields such
as electronics, sensing, catalysis, energy storage as well as biome-
dicines. In biomedicines, graphene and its derivatives could be
applied as a delivery vehicle for drugs[42], photothermal reagents
(PTAs) and photosensitizer (PS) for phototherapy in cancer treat-
ment[47,48], biosensors, the component of tissue engineering,
anchor for growth and differentiation of cells and so on. However,
it is of note that, pristine graphene has less compatibility than pris-
tine graphene was found to be toxic for cells. It was reported that
the hydrophobic graphene might interrupt the interaction between
membrane-associated proteins, eventually leading to cellular toxi-
city[49]. Nevertheless, the functionalization of graphene was
shown to be an effective way to the reduction of its toxicity. There-
fore, it is necessary and advantageous to develop different strate-
gies of functionalization of graphene for minimizing its toxicity
before its clinical application.

2.2. Black phosphorus (BP)

Phosphorus has various allotropes, such as BP, white phospho-
rus, violet phosphorus, and red phosphorus as well as the A7 phase.
And among them, BP is the most stable one under ambient
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conditions[50,51]. BP also knew as phosphorene, whose
nanosheets were first exfoliated from bulk BP in 2014[52]. There
are several forms of 2D BP, including BP nanosheets (BPNSs)[53],
BP nanoparticles (BPNPs)[54], and BP quantum dots (BPQDs)[55].
Structurally, in monolayer BP, the phosphorus atom and three
neighboring atoms were bonded together by the covalent bond
in an sp3 hybridized orbitals while the interaction between layers
was maintained by weak Van Der Waals forces[56]. Therefore, lay-
ers BP was easy to be exfoliated from the bulk crystal. Because of
the existence of lone electron pairs in BP, BP is reactive to air
and easy to be degraded[57]. One of the methods for improving
the stability of BP in humid and light conditions as well as in phys-
iological environments is that surface functionalization. And nowa-
days, many organic polymers were usually used to modify the BP
as polymers themselves’ characteristics of low cost and degradabil-
ity[51,58].

BP possesses many exceptional properties including high carrier
mobility, high ON-OFF current ratio, large tunable energy band-
gap, and ambipolar electrical conduction, etc. Due to its versatile
properties, BP has been applied in many fields such as energy stor-
age[59], sensors, optoelectronics[60], electronics[61], and drugs
delivery in bio-application, etc. Besides, BP has inherently excellent
biocompatibility and degradability because phosphate, the physio-
logical product of BP degradation, is not only harmless but also a
raw material involves in osteogenesis[62]. The cytotoxicity of BP
itself was reported to be concentration and size-dependent, there-
fore it is feasible to control the cytotoxicity of BP by regulating the
concentration and size of the application, which greatly facilitate
the application of BP in biomedicines[63,64]. Nowadays, in
biomedicines, the application of BP in phototherapy for cancers
[65] or bacterial infection treatments were promising and aroused
great interest of researchers because of its broad light absorption
range from visible to near-infrared. What’s more, BP had also been
employed in biosensors[66], bioimaging[67], theranostics[68–70],
drug delivery[71], and so on.

2.3. Mxenes

Because of their brilliant prosperities, 2D MXenes attracted a lot
of attention from researchers and got fasted development since it
was discovered in 2011[72]. MXenes is an emerging family of 2D
metal carbides including a large class of transition metal carbides,
nitrides, and carbonitrides[73,74]. MXenes could be produced by
etching and delamination of MAX phases which are constituted
by ternary carbides and nitrides with a pristine formula of Mn+1AXn

(n = 1–3) where M, A, and X, respectively represent the early tran-
sition metals (Ti, Hf, Sc, Ta, Mo, Cr, Zr, Nb, V, etc.), main-group sp
elements and both C and N atoms. However, MXenes are chemi-
cally formulated as Mn+1Xn or Mn+1XnTx (n = 1–3). The Character
M in the formula is on behalf of a transition metal and X represents
carbon and/or nitrogen while T indicates the functional groups of
surface such as hydroxyl, fluorine, or oxygen [75,76].

Due to the big variations of MAX phases, 30 varieties of MXenes
were discovered at least to date[77]. Different MAX phases would
be fabricated to various MXenes with different properties[78].
Besides, the properties of MXenes would be also affected by differ-
ent functionalization, which further is conducive to promote the
variety of the MXenes superfamily. For instance, Ti3C2Tx MXene
possesses a high volumetric capacitance, making it suitable for
applicating in the battery industry while the Ti2C has prominent
gravimetric hydrogen storage capacities because of its biggest
specific area, endowing it an important role in energy storage
[73]. MXenes possesses many brilliant physicochemical properties
such as chemical stability[79], large surface area and thermo/elec-
trical conductivity[80,81], tunable lateral size as well as
hydrophilicity endowed by its surface functional groups, making
3

MXenes could be applied in many fields including catalysis, energy
storage, sensing, semiconductor, environmental applications and
biomedicines[82–86]. Due to some attractive properties of
MXenes, they are more predominant than some other 2D materials
while applied in biomedicines. First of all, the hydrophilic nature of
MXenes makes them easy to disperse in the physiological environ-
ment[77]. Besides, some of MXenes are biocompatible to living
organisms with negligible toxicity because such as Ti, Ta and Nb
are relatively inert in physiological conditions and some recent
studies had shown the degradability of MXenes in mice[87,88].
Then MXenes have strong light absorption in the NIR region, mak-
ing them suitable and powerful in phototherapy and photoacoustic
imaging (PAI)[24,89]. Last but not least, different functionalization
of MXenes could be achieved by flexible modification, affording a
way for designing the optimal MXenes-based drugs compound
for bio-applications. Up to now, MXenes had been employed in
thermotherapy for cancers[90] or antimicrobial treatments[91],
tissue engineering[91], drug delivery[92], biosensing[93], and
theranostics[94], etc. in biomedicines.

2.4. Transition metal dichalcogenides (TMDCs)

Structurally, TMDCs whose stoichiometry is MX2, present as
two layers of chalcogen atoms (X stands for S, Se, or Te) with a
hexagonal layer of transition metal atoms (M represents V, Mo,
W, Ta, Nb, Ti, Hf, Zr, Tc, and Re) sandwiched in the middle
[95,96]. The van der Waals is responsible for the interaction of
adjacent sheets leading to the production of 2D TMDCs by exfolia-
tion. Similar to MXenes, 2D TMDCs could be also produced from
different bulk parents, bring them many varieties with different
properties as well as endowing them a cheaper and more available
advantage during application. For example, there are 40 different
TMDCs at least. However, some of them are metals (e.g., TiS2 and
VSe2) while some are semimetals (MoTe2 andWTe2). Some of them
could be employed as conductors (e.g., TaS2 and NbS2) and semi-
conductors (e.g., WS2, WSe2, MoSe2, and MoS2) while some func-
tion as insulators.

Like other 2D materials, 2D TMDCs also possesses a series of
commonly remarkable capacities such as large specific surface
area, high light absorption near NIR, photothermal stability, large
and adjustable bandgap as well as biocompatibility[97], leading
to the availability of applying them in various fields such as catal-
ysis[98], sensors[99], electronics[100], energy storage[101],
biomedicines[97] and so on. Besides, 2D TMDCs could be further
functionalized though it is chemically inert. There are two main
kinds of methods for functionalization of 2D TMDCs, that is, they
could be functionalized both chemically and physically. The chem-
ical functionalization of TMDCs always involved the addition of
organic bond modifiers to TMDCs via the formation of coordination
bonds or covalent bonds. However, physical functionalization
refers to the process that integrates the modifiers with 2D TMDCs
possessing a high specific surface area by electrostatic attraction,
hydrogen bonding force and van derWaals force etc. Through func-
tionalization, the properties of TMDCs would be further promoted
and their application would be more adjustable.

Based on the versatile properties and the availability of func-
tionalization as well as biocompatibility revealed by the promotion
of proliferation of pre-osteoblast cells[102], TMDCs are also
applied broadly in biomedicines. Compared to some other 2D
materials, 2D TMDCs have some advantages for bio-applications.
For example, 2D TMDCs have more varieties relative to graphene,
which makes them more flexible for applications. What’s more,
in contrast to graphene, 2D TMDCs are more hydrophilic, leading
to better dispersion in the physiological environment. And com-
pared with black phosphorus, TMDCs are more stable in ambient
conditions, endowing them with convenience in preparation and
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application. The versatile properties of TMDCs greatly promote
their application in biomedicines. Nowadays, TMDCs are broadly
applied in biosensing, bioimaging, phototherapy, drugs delivery,
and tissue engineering, etc. in biomedicines[103,104].

3. 2D materials preparation and modification

3.1. Preparation method for 2D materials

Nowadays, various methods for the production of 2D materials
are available. Conventionally, these methods could be divided into
two kinds: the gas-phase synthesis methods and solution-based
methods. The common gas-phase synthesis method could further
be divided into chemical vapor deposition (CVD)[105] and physical
vapor deposition (PVD)[106]. The solution-based method includes
exfoliation and chemical synthesis[107]. Besides, in recent years, a
promising method named topochemical synthesis attract interests
from researchers, by which the elements are added to, extracted,
or substituted from precursors in a condition of gas or liquid without
changes on themorphology or structure of precursors[108]. Common
topochemical synthesis includes topochemical deintercalation and
transformation. Among them, deintercalation represents a process
that some compounds or element layers that were selectively
removed from the precursors. A way for production of 2D MXenes
via selective etching the element A from the MAX precursor is a typ-
ical kind of topochemical deintercalation[109,110]. However,
topochemical transformation involves addition elements to the par-
ent precursors or replacement of elements the parent precursors.

All these synthesis methods are mainly based on two strategies
that are, bottom-up strategy and top-down strategy[111]. The
bottom-up strategy refers to the assembly of 2D materials from
atoms or molecules, which is usually used for the combination of
large and more compounds with smaller components. The CVD
and PVD as well as solvo-thermal synthesis methods are common
synthesis methods based on bottom-up strategy. The top-down
strategy involved in the destruction of the Van der Waals interac-
tion between the adjacent layers of parent precursors by the
employment of external forces or insertion of molecules to achieve
controllable production of single-layer sheets[112]. Common
methods based on top-down strategy include mechanical cleavage
(MC), liquid-phase exfoliation (LPE) and chemical exfoliation, etc.
[113]. For instance, MC is a common means for the production of
graphene with few layers from graphite via the application of
adhesive tape[114]. Based on the bottom-up strategy, it is feasible
to obtain 2D materials with higher quality and bigger domain sizes
relative to the top-down strategy. However, the bottom-up strat-
egy could not achieve scalable production of 2D materials, which
impedes the suitability of 2D materials for practical applications
[4]. The top-down strategy, except MC, makes it simple and fast
to produce 2D materials on large scale with high reproducibility.
However, the top-down strategy is energy-intensive that requires
high shear and temperature, which might lead to destruction in
the surface structure[115].

Besides, different synthesis methods have their advantages and
disadvantages, and 2D materials fabricated by different synthesis
methods might have different properties and are suitable for dif-
ferent applications. For instance, the production of 2D materials
synthesized through CVD or PVD synthesis is enough for electron-
ics devices but is not sufficient for some other applications such as
energy storage[116,117]. As for solution-based methods, higher
yields could be achieved. However, solution-based methods are
only suitable for those precursors compounds whose interaction
of layers was maintained by weak van der Waals forces along
one direction[118]. Therefore, it is necessary to be cautious to
choose the best synthesis method so that produce 2D materials
meeting the actual need for given applications.
4

3.2. Surface functionalization/ modification of 2D materials

To promote the properties of 2D materials, enhance their bio-
compatibility as well as stability, and therefore broaden their
applications when applied in biological systems, surface function-
alization/ modification of nanomaterials is an important mean
[115,119]. Various kinds of molecules and compounds such as
polymers, metals, biomolecules, radioisotopes, and drugs, etc. have
been successful to be employed to modify 2D materials[115]. Cur-
rently, there are many surfaces modification means had been
employed to achieve the improvement of properties of 2D nano-
materials for biomedical applications and most of them are based
on covalent or noncovalent strategies[120–123].

Covalently functionalizing the 2D nanomaterials is a process
that forming chemical bonds among the functionalization materi-
als and 2D materials. For instance, many kinds of functional mole-
cules or polymers could be used to chemically modify 2D black
phosphorus via the direct formation of P-C and/ or P-O-C bonds
between them[53]. For example, some commonly used polymers
for functionalization of 2D materials such as amine or amino-
modified polyethylene glycol (PEG), which had been reported to
be able to modify graphene oxide or TMDCs, leading to improve-
ment of their stability in various applications[124,125]. A
mechanochemical method named high-energy ball milling (HEBM)
could be used to achieve covalent bonding[126,127].

Besides covalent modification, functionalization with noncova-
lent methods is another way for modification of 2D materials fre-
quently, which involves hydrogen bonding, hydrophobic action,
electrostatic interactions, p-stacking, and van der Waals forces,
etc.[122,128–130]. For example, some 2D materials with negative
charges, e.g., black could effectively absorb cationic polymers such
as polyethyleneimine (PEI) and amino polyethylene glycol (PEG-
NH2) through electrostatic interaction[131]. Silk fibroin is found
to attach to the surface of BP firmly via powerful hydrophobic
action[132]. At last, modification of 2D materials could be simply
achieved by wrapping them in polymersomes/ polymeric vesicles
with a bilayered membrane[133].

There are many polymers such as soybean phospholipids (SPs)
[2], amphiphilic PEG-grafted poly (maleic anhydride-alt-1-
octadecene, C18PMH-PEG)[134], polyethyleneimine (PEI)[135],
distearo-sn-glycero-3-phosphoethanolamine-N-[methoxy(polye
thylene glycol) (DSPE-PEG) polymers[136], polyvinyl pyrrolidone
[137] et al. have been used to noncovalently modify 2D materials,
effectively enhanced their physicochemical properties. Despite
there are various advantages of noncovalent modifications, inter-
actions formed by noncovalent modifications between 2D materi-
als and functionalization reagents are weaker than those formed
covalently. For instance, desorption might happen toward intra-
venous administration is a worrying problem of electrostatic inter-
action. Therefore, researchers should choose the most suitable way
to modify the 2D materials for different applications.

There are many kinds of molecules and compounds such as
polymers, metals, biomolecules, radioisotopes, and drugs, etc. have
been successful to be employed to modify 2D materials[94]. For
example, PEG, a kind of polymer, was used to modify 2D WS2
through the formation of covalent bonds, which promoted the sta-
bility of 2D WS2 in physiological solutions and therefore induced a
longer blood circulation time of 2D WS2[138]. Sushmitha and co-
workers developed a novel biosensor for qualitative and quantita-
tive detection of neurological drugs by functionalizing the 2D MoS2
with metals including aluminum/ cuprum etc. It was found that
sensors of metal-functionalized 2D MoS2 showed high sensitivity
and selectivity as well as stability upon detection of neurological
drugs. Biological molecules such as hyaluronic acid, folic acid,
arginylglycylaspartic acid, and biotin, etc. are usually used for
guiding 2D materials to specific tissues and cells because of their
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high affinity toward the cell membrane or the extracellular matrix.
Besides, some biological molecules such as phospholipids (PLs)
were found to be able to promote the stability and biocompatibility
of 2D materials in physiological conditions by improving the inter-
action of 2D materials and the cell membrane[115,139]. As for
radioisotope, the functionalization of 2D materials with a radioiso-
tope is an effective strategy for monitoring the biodistribution of
nanomaterials in the physiological environment. In an experiment
led by Liang Cheng and colleagues, 64Cu isotope was labeled to
FeSe2-decorated Bi2Se3 nanosheets to fabricate a multimodal imag-
ing technique through the promotion of its sensitivity[140]. Last,
functionalization of 2D materials with some drugs to fabricate a
multi-model therapy might achieve a synergistic therapeutic
effect. For example, doxorubicin, a common drug of chemotherapy,
could be loaded to some 2D materials with NIR light absorption for
the combination of chemotherapy and phototherapy, which pro-
vides a potently synergistic mean for cancer therapy[141].

3.3. Surface functionalization of 2D materials for bone therapies

Due to the versatile properties of 2D materials and their various
applications in biomedicines, 2D materials are drawing wide atten-
tion from researchers who are occupying in treating bone diseases.
For instance, the broad light absorption and the excellent property
of photothermal conversion make some 2D materials including 2D
BP and MXene, etc. suitable for bone tumor therapy. And some 2D
materials were found to be adhesive to stem cells as well as have
the ability of osteoconductivity of stem cells which makes them
an important role in bone tissue regeneration. However, some
intrinsic demerits of 2D materials such as the instability of BP in
ambient conditions, the insufficient mechanical strength of MXene
in the physiochemical environment, greatly impairs their thera-
peutic effect and impedes their applications. Fortunately, the func-
tionalization of 2D materials is a powerful means to solve this
problem.

Here, we concluded some strategies employed in different stud-
ies about the functionalization of 2D materials for bone therapy
(Table 1). In an experiment led by ChongWang et al., 2D BP is func-
tionalized by being combined with doxorubicin hydrochloride
(DOX), b-tricalcium phosphate (b-TCP), osteogenic peptide,
Table 1
A summary of various kinds of molecules and compounds used for functionalization of 2D m

2D
materials

Functionalization Property

BP silk fibroin stability and facile solution-pr
BP poly(lactic-co-glycolic acid) efficient NIR photothermal res
BP BP/b-TCP/DOX/Peptide 3D printed

scaffold
sufficient mechanical strength
controlled release

BP poly(e-caprolactone)/collagen nanofiber cell attachment and proliferat
MXene 3D-printed bone-mimetic scaffolds phototherapy and angiogenes

MXene ultralong hydroxyapatite nanowires mechanical properties, hydrop
MXene S-nitrosothiol/mesoporous silica/3D-

printing bioactive glass scaffolds
photonic hyperthermia for nit
production of phosphorus and

MoS2 Al/Cu/Sn/Ti probing for aspirin, caffeine, t

MoS2 Polydopamine/ arginine-glycine-
aspartic acid (RGD)/titanium

osteogenesis, antibacterial abi

GO polydopamine adhesive properties
GO Chitosan/Polyvinyl alcohol/

Hydroxyapatite/gold films
antibacterial ability, osteoblas

GO polydopamine nanofilm/
polyetheretherketone/oligopeptide

cytocompatibility, osteogenes

GO BP/3D poly(propylene fumarate)
scaffolds

cell attachment, phosphate su

Bi2Se3 radioisotope 64Cu monitoring the biodistribution
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followed by being contained in water/poly(lactic-co-glycolic
acid)/dichloromethane emulsions to realize tissue regeneration
after tumor resection and prevent tumor recurrence. Upon such a
strategy, BP and DOX were applied for tumor resection via pho-
tothermotherapy and chemotherapy respectively. Meanwhile, b-
TCP and osteogenic peptide were used for the achievement of bone
tissue regeneration. As shown in the results, this strategy achieved
rapid tumor resection and lasting suppression of tumor recurrence
[142]. 2D MXene was found to possess potential osteoinductivity
and good biocompatibility. However, the mechanical strength of
MXene in physiochemical conditions was not sufficient for cell
adhesion. Hydroxyapatite (HAP) also showed favorable bioactivity
and osteoconductivity. Meanwhile, HAP could also be used as a
reinforcing agent for enhancing the mechanical and biological
properties of the composites. Based on the properties of MXene
and HAP, Yu Fu and co-workers functionalized 2D MXene with
1D hydroxyapatite nanowires to fabricate a nanocomposite mem-
brane with enhanced mechanical and biological properties, which
effectively promoted the cell adhesion and cell proliferation as well
as osteogenic differentiation. Besides, in a rat calvarial bone defect
model, functionalization of MXene with HAP also pronouncedly
induced bone regeneration[143]. In another experiment led by
Na Young Shim and co-workers, polydopamine (PDA) was
employed in the functionalization of 2D GO due to its mussel-
derived adhesive properties to achieve enhanced cell adhesion
ability and osteoinductivity. They found that embryonic stem cells
(ESCs) cultured on composites coated by 2D GO modified by PDA
(PDA/GO) had higher viability. Besides, PDA/GO significantly pro-
moted the osteogenic potency of ESCs cultured on it[144].

From the above examples, it is easy to see that the motif of func-
tionalization of 2D materials includes two aspects. On the one
hand, functionalization could remedy the inherent defects such
as enhancing the stability and mechanical properties, ensuring
their application in bone disease treatments. On the other hand,
2D materials could be functionalized with a variety of materials
with the ability on treating bone diseases to achieve synthetic
effects for diseases treatment, which would amplify the therapeu-
tic effect. In a word, functionalization of 2D materials is a process
of replenishing what is still lacking for the treatment of a
disease.
aterials and their subsequent applications in biomedicines (mainly in bone therapies).

Disease’s treatment Ref

ocessability wound repair [132]
ponse/photothermal osteogenesis bone regeneration [145]
; excellent photothermal effect; tumor resection-induced bone

defects
[142]

ion osteodifferentiation [146]
is osteosarcoma and angiogenesis/

osteogenesis of bone defects
[147]

hilicity and biocompatibility bone regeneration [143]
ric oxide production, in situ
calcium components

osteosarcoma treatment and bone
regeneration

[148]

ramadol and nicotine detection of numerous bioanalytes
in body fluids

[149]

lity bacterial infection and
osseointegration

[150]

osteogenic differentiation of ESCs [144]
t differentiation bone tissue engineering [151]

is, antibacterial ability bone infection [152]

pply osteogenesis [153]

of Bi2Se3 cancer theranostics [140]



Fig. 1. Schematic of a 3-D hydrogel platform that promotes bone regeneration: PO4
3-

produced by the degradation of BPNs encapsulated in the hydrogels could capture
calcium ions to promote in situ biomineralization. Reprinted with permission from
Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration via a Sustained
Supply of Calcium-Free Phosphorus. Copyright 2019 American Chemical Society
[168].
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4. Applications of 2D materials in various bone diseases
therapies

4.1. Application of 2D materials in bone tissue engineering (BTE)

Bone is an important organ in human bodies since it not only
plays a vital role in the structural support of the body, load-
bearing for movement, and physical protection of the inner organs
but also functions as a foundation of hematopoiesis and bone
regeneration because the bone marrow reserve a lot of hematopoi-
etic stem cells (HSCs) as well as bone marrow-derived mesenchy-
mal stem cells (BMSCs) that could differentiate into various kinds
of blood cells and osteocytes[154–156]

]. However, repair of bone defects caused by trauma or some
diseases such as tumors is still a challenging issue clinically
[157,158]. Normally, bone graft transplantation autologously, allo-
geneiclly, or substitution of synthetic bone is a conventionally clin-
ical therapy[159,160]. Nevertheless, it’s worth noting that there
are also some problems including donor site complications, limited
availability of tissue, and immunological rejection, etc. that need to
be solved when applying these methods[161]. Therefore, it is no
doubt that the development of new strategies without shortcom-
ings of conventional therapies is urgent and significant for the
repair of the bone defect.

BTE, a method that combines biomaterials, cells, and osteogenic
factors to promote bone regeneration in bone defects sites
[162,163]. Recently, due to the excellent physicochemical proper-
ties of 2D materials including biocompatibility and biodegradabil-
ity, unique mechanical properties as well as loading capacity, and
so on, the application of 2D materials in BTE has attracted exten-
sive attention from researchers. For example, 2D materials such
as BP have excellent biodegradability that could degrade into non-
toxic PO4

3- in vivo, which could supply the phosphorus element for
bone regeneration[63].

Due to the versatile properties of 2D materials, they could func-
tion in different ways to be applied in BTE. First of all, some 2D
materials could be applied as one kind of raw material for bone
regeneration. Take BP as an example, on the one hand, BP is an allo-
trope of phosphorus with the most stable and the least reactive
nature[164] and phosphorus is an important element in the human
skeletal system that bones and teeth contain 85% of phosphorus of
human body[165,166]. On the other hand, PO4

3-, the degradation
product of BP, could coordinate with Ca2+ to achieve in situ
phosphorus-driven biomineralization[167]. Therefore, it is reason-
able to believe that incorporation of BP into BTE to achieve repair
of the bone defect is feasible. Huang et al. fabricated a BP/
polymer-based hydrogel scaffold for bone regeneration based on
a strategy that accelerating biomineralization and bone regenera-
tion by capturing calcium ions through phosphorus provided by
BP photoresponsive degradation. They found the photorespon-
sively released phosphate from BP/polymer-based hydrogel scaf-
fold could accelerate mineralization by capturing Ca2+ in vitro as
well as successfully promoted bone regeneration in bone defect
site in rabbit (Fig. 1)[168]. Similarly, Wang and colleagues trans-
ported BP by a cell-targeting aptamer-modified bioinspired Matrix
vesicles (MVs) to special bone-related functional cells with ability
of regulating biomineralization. Under the guiding of aptamer,
MVs concentrated around special bone cells and further leading
to an increase of concentration of inorganic phosphate in a pho-
toresponsive manner, which ultimately promoted the biomineral-
ization of osteoblasts and bone regeneration (Fig. 2)[169].

Secondly, 2D materials could also function by enhancing the
properties of the biocompatible scaffold in BTE. For example, the
incorporation of 2D materials would promote the performance of
scaffolds on cell adhesion, proliferation, and differentiation[170].
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It had been reported that the characteristics on the material sur-
face and the forces derived from the cell/material interfaces are
two key important factors for mediation of cell attachment and cell
differentiation[171,172]. However, some polymers including poly-
caprolactone (PCL) and poly-L-lactic acid (PLLA) which are often
applied as the major components of the bio-scaffold used in BTE,
were unsatisfied for cell attachment and differentiation because
of the lack of sites for cell adhesion. Therefore, it is requisite to
add a chemical modification to make them suitable for cell attach-
ment[34]. Kim et al. fabricated a reduced graphene oxide (RGO)-
incorporated chitosan substratum for stem cell engineering. Rela-
tive to the chitosan substrata group, incorporation of RGO not only
showed enhanced cell adhesion and cell differentiation of human
mesenchymal stem cells (hMSCs) but also were more beneficial
to osteogenesis of hMSCs even in the absence of differentiation-
inducing chemicals because RGO–chitosan substrata could provide
an environment favorable for the adhesion and proliferation of
hMSCs as well as promote the interaction between cell-substrate
and cell–cell contacts[173]. In another experiment led by Duan
and colleagues, a similar result was found, that is incorporation
of the graphene into nanofibrous poly (L-lactic acid) scaffolds could
significantly enhance the cell adhesion, proliferation, and osteo-
genic differentiation of bone mesenchymal stem cells [174].
Besides, some 2D materials were found to have a synergistic effect
in promoting the surface properties of scaffolds. Liu et al. coated
the GO nanosheets with BP followed by absorption of them
together onto 3D poly (propylene fumarate) (PPF) scaffolds. In such
a scaffold, it was expected that incorporation of GO nanosheets
would enhance cell attachment by increasing the surface area
and achieve a continuous supply of phosphate for osteoblast differ-
entiation through slow oxidation of BP nanosheets, finally leading
to a goal of new bone formation. Consequently, they did found that
corporation of BP together with GO nanosheets achieved a syner-
gistic effect on cell osteogenesis as revealed by that the cell prolif-
eration rate and abundance of cellular osteogenic markers, as well
as the biomineralization, was higher in these scaffolds than those
with only one of the incorporation of the 2Dmaterials (Fig. 3)[153].

Last, the incorporation of 2D materials could also reinforce the
physicochemical properties of the bio-scaffold. As Shear-thinning



Fig. 2. (A) Schematic illustration of acceleration of mineralization induced by Apt-bioinspired MVs. (B) Synthetic route of Apt-bioinspired MVs. (C) Schematic of illustration
that biomineralization induced by Apt-bioinspired MVs. (D) In vivo examination of the effect of Apt-bioinspired MVs on bone issue reconstruction. Reprinted with permission
from Springer Nature [169].
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injectable hydrogels could shield the encapsulated cell from high
shear forces so they promoted the viability of cells and enhanced
the outcome of cell-based therapeutics. Recently, methods for
obtaining injectable biomaterials have been developed extensively.
Thakur et al. fabricated a kappa-carrageenan (jCA) hydrogel scaf-
fold and reinforced it by incorporation of 2D nanosilicates to obtain
injectable hydrogels. They found that at the presence of 2D
nanosilicates, the hydrogel scaffold presented shear-thinning char-
acteristics, elastomeric properties, and enhanced mechanical stiff-
ness, as well as physiological stability. What’s more, encapsulated
cells in these nanocomposite hydrogels showed high viability after
injection, indicating this injectable nanoengineered system
achieved by incorporation of 2D materials possessed the potential
on delivery of cells for tissue regeneration such as BTE[175].

4.2. Application of 2D materials in joint lubrication

In recent years, employing 2D materials in lubrication has
aroused a lot of interest since superlubricity was found to exist
in some layered 2D materials including MoS2 and boron nitride
(BN)[176,177]. Studies had shown that due to their ultra-thin layer
structures and the negligible shear strength among the layers, it is
easy for 2D materials to enter the friction surfaces, which prevents
the friction surfaces to directly contact each other and eventually
decreasing the coefficient of friction. Currently, the mechanisms
that 2D materials could be applied in lubrication could be divided
into 3 aspects (Fig. 4)[4,178]. First of all, the film formation mech-
anism that 2D materials could be absorbed to form a physical
adsorption film, and could deposit directly to form a deposited film
as well as form a chemical reaction film through a chemical reac-
tion. The film formed by 2D materials not only reduces the friction
between the asperities but also protects the substrate from dam-
age by friction[179]. The anti-wear capacity of the film formed
by 2D materials might be positively correlated with the thickness
and mechanical strength of the film[180]. Secondly, 2D materials
could be used as a filler to compensate for the mass loss of the cav-
ity on the friction surface so that reducing wear and tear, which is
known as the self-healing mechanism. Last, the ball bearing mech-
anism by which 2D materials could form ‘‘class bearings” at the
contact surfaces and therefore converted the sliding friction of
the contact surface between two substrates into rolling friction
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between the contact surface of substrate and the 2D materials to
reduce the friction and wear. Meanwhile, balls formed by 2D
materials also direct prevent surface contact of two substrates
[181,182].

Besides MoS2 and BN, some other 2D materials had also been
found to be able to be applied in lubrication. For instance, it was
reported that even 0.075 wt% graphene platelets incorporated into
oil could effectively promote the lubrication performance of oil and
improve the wear resistance of the machine[183]. Researchers had
found that the production of phosphorus oxides from the degrada-
tion of about 50% black phosphorus (BP) leading to the reduction of
friction force, indicating that the degradation of BP might be poten-
tially favorable for its application in lubrication[184]. Yanan Meng
and colleagues coated hot rolled surface as well as the metallo-
graphic structure of steel strips with nano-TiO2 lubricating fluid
to improve the anti-friction performance. They found the defects
of the hot-rolled surface, as well as the grain size of rolled steel
strips, could be decreased significantly with the application of
nano-TiO2 lubricating fluid[185].

What’s more, 2D materials not only could be fabricated to be
lubricants on their own but also could be combined with other
2D materials to form a compound and therefore functioned as a
lubricant. The nanocomposite of copper oxide/reduced graphene
oxide (CuO/rGO) was fabricated and its lubricating effect was
investigated in a research group. It was found that about even
0.06 wt% CuO/rGO incorporation could significantly reduce the
46.62% friction coefficient and 77.05% wear rate. Besides, the lubri-
cating effect endowed by CuO/rGO nanocomposite displayed much
better lubricating performance than rGO or CuO alone[186]. To
improve the anti-wear performance, Wu et al. combined the
hydroxide/reduced graphene oxide with the nano-lanthanum to
fabricate a nano-La(OH)3/RGO composite followed by the addition
of it into the diesel engine oil. They found that the addition of
0.1 wt% nano-La(OH)3/RGO composites could induce a 44%
increase in the anti-wear effect of diesel engine oil[187]. Zhang
et al. combined crumpled graphene balls (CGB) and nano-
magnesium silicate hydroxide (MSH) to synthesize MSH/CGB com-
posites. Then, the oleic acid and stearic acid were added to the
MSH/CGB composites to obtain lipophilic composites (ML-MSH/
CGB). It was shown that incorporation of 0.005 wt% ML-MSH/
CGB composites into the base oil achieved the most powerful



Fig. 3. Schematic illustration of 3D scaffolds incorporated with 2D GO and BP for bone regeneration. Reprinted with permission from Two-Dimensional Black Phosphorus and
Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. Copyright 2019 American Chemical Society [153].

Fig. 4. Schematic illustration of the mechanism by which 2D materials functioned
in lubrication[178].
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anti-friction performance. The average friction coefficient and
wearing degree, as well as wear scar diameter, were decreased
by about 25%, 22%, and 17% respectively[188]. Overall, 2D materi-
als are believed to be a kind of promising novel lubricant.
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Normally, articular cartilage in healthy people is a self-
lubricating system. Some diseases of joint such as OA is believed
to begin with injuring in the cartilage, causing the collapse of lubri-
cation, which in turn aggravates the damage in structure and func-
tion of cartilage tissue and the subchondral bone[189,190]. Hence,
improvement of the lubrication in joints with diseases might be an
effective way for protecting the damaged cartilage and inhibiting
the deterioration of joint diseases. As we mentioned above, the
self-healing mechanism, one of the mechanisms that 2D materials
function as lubricants is that 2D materials could be filled into the
cavity on the friction surface to neutralize the mass loss and reduce
the wear and tear. Therefore, it is reasonable to believe that in the
future, those 2D materials with good biocompatibility might be
able to be filled directly onto the surface of damaged cartilage to
restore the structural integrity of cartilage and therefore restore
the lubrication on the surface of the cartilage and relieve patients
from pain.

Currently, the application of artificial joints is a kind of treat-
ment for patients with damaged joints to relieve arthritis pain
[191]. However, ultra-high molecular weight poly ethylene
(UHMWPE), the major component of artificial joints, is easy to be
worn out and finally reducing the service life of artificial joints
[192]. On the one hand, it was reported that incorporation of some
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nanofiller additives with good tribological characteristics such as
graphene[193], carbon nanofiller[192], and carbon nanofiber
[194], would strengthen the wear resistance. On the other hand,
based on the film formation property of 2D materials, we presume
that, theoretically, the incorporation of 2D materials into the con-
tact surface of artificial joints could be an effective way to elevate
the service life of artificial joints by promoting the lubrication and
reducing the friction.
4.3. Application of 2D materials in antibacterial for orthopedic
implants

An orthopedic implant is a common surgical intervention for
orthopedic disorders which is usually applied to fix fractures, cor-
rect the deformities, achieve joint replacements, etc., therefore
relieves patients from paint and promotes early mobilization as
well as the early return of function[195]. Metals such as titanium
alloys, stainless steel, and cobalt alloys, and so on are commonly
vital components of orthopedic implants[196–198]. However, the
application of any orthopedic implant always poses patients with
the risk of infection, which eventually causes implant failures
[195]. It was reported that in the USA, about 5% of orthopedic pro-
cedures with infection happened a year, and leading to costing of
15,000 dollars per incidence[199]. Nevertheless, because the drug
resistance to traditional antibiotics is currently a growing problem,
therefore, it is in urgent need of developing new strategies to
enhance the antibacterial activities of orthopedic implants
[200,201].

Because of their unique structures, 2D materials have fascinat-
ing physicochemical properties and therefore possess versatile
applications including antibacterial[202]. The mechanisms that
2D materials could act as antibacterial agents could be mainly
attributed to several aspects such as oxidative stress including
reactive oxygen species (ROS) dependent and ROS independent,
physical contact destruction, and photothermal antibacterial
[203,204].

Oxidative stress could destroy some components key for bacte-
rial metabolism such as DNA, and therefore killing bacteria
[205,206]. As demonstrated by previous studies, many 2D materi-
als could function as photosensitizer (PS) for cancer therapy
because of their capability of inducing ROS production[207–209].
Generally speaking, oxidative stress-mediated by 2D materials
could be divided into ROS-dependent oxidative stress or ROS-
independent oxidative stress. Common ROS includes hydroxyl rad-
icals (�OH), hydrogen peroxide (H2O2), and singlet molecular oxy-
gen (1O2) as well as superoxide anions (�O2

–). Recently, more and
more 2D materials have been demonstrated to function as antibac-
terial agents by inducing the production of ROS. Karunakaran and
co-workers achieved a nanomaterial-based antibiotic effect with
a long-term (>8 months) stability and enhanced bactericidal capac-
ity by innovatively exfoliating and functionalizing 2D 2H-MoS2
nanosheets with different thiol surfactants. Based on the previous
reporting that vertically aligned 2H-MoS2 could induce the produc-
tion of ROS[210], they investigated whether the ROS was responsi-
ble for the antibacterial activity of 2H-MoS2 by Ellman’s assay in
this work. As a result, 2H-MoS2 caused a severe loss of glutathione
(GSH), a kind of vital reductant in organisms, indicating a great
production of ROS induced by 2H-MoS2 (Fig. 5)[211]. In another
work, Yang and colleagues employed 2D exfoliated MoS2 (ce-
MoS2) in the antibacterial examination. The viability of the bac-
terium was reduced effectively both in a dose and time-
dependent manner upon the treatment with ce-MoS2. Meanwhile,
the concentration of superoxide anion (O2

�–) was found to be
greatly elevated by ce-MoS2, but the concentration of GSH was
decreased significantly, suggesting that ROS induced by ce-MoS2
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was partly responsible for the antibacterial performance at least
[212].

Besides, ROS-independent oxidative stress also plays a vital part
in the antibacterial performance of 2D materials. In a study led by
Rasool et al., 2D Ti3C2Tx, a kind of MXene, was tested for its
antibacterial properties against both Gram-positive bacterium
and Gram-negative bacterium. In comparison with GO, an
acknowledged antibacterial agent, Ti3C2Tx was more potent in
inhibiting the antibacterial activity toward both bacteria. To find
out the mechanism that Ti3C2Tx functioned as an antibacterial
agent, GSH concentration was detected. The results showed that
Ti3C2Tx could promote the oxidation of GSH, revealing the induc-
tion of oxidative stress by Ti3C2Tx. Then, XTT assay was carried
out to determine the production of superoxide anion (O2

�-). How-
ever, no noticeable O2

�- was detected at different Ti3C2Tx concentra-
tions, implying that ROS might play an insignificant role in the
mediation of Ti3C2Tx antibacterial activity[213].

The structural integrity of the bacterial membrane is vital for
the survival of bacteria, suggesting that destroyed the integrity of
the bacterial membrane might be an effective means to kill the
bacteria[204]. Physical contact destruction is a powerful means
that could break up the bacterial membrane based on this mecha-
nism. Graphene-based nanomaterials were the first ones to be pro-
posed to function by this mechanism. Initially, physical contact
destruction was thought to work based on the sharp edges of
nanosheets, because the sharp edges of nanosheets were viewed
to have the lowest energy barrier which contributes to nanosheets
penetrating the lipid bilayer[214,215]. Subsequently, Lu et al.
found that the antibacterial activity of graphene oxide nanosheets
was orientation-dependent which is affected by the orientation of
GO nanosheets aligned. As a result, GO nanosheets with vertical
orientation were found to be more powerful in inhibiting the activ-
ity of bacteria compared with random and horizontal orientations.
The authors thought that, relative to the horizontal orientations,
alignment in vertical increased the density of edges of GO
nanosheets when in contact with the bacteria [214]. In considera-
tion of the problem that orthopedic implants were usually suffered
from the colonization of bacteria followed by biofilms formation,
leading to infection and the final implant failure, Wang et al devel-
oped a novel idea that in situ formations of 2D nanoflakes with
non-leaching surfaces on magnesium (Mg) through hydrothermal
treatments, which not only resolved the problem that leaching
magnesium alloy always caused the uncontrolled release of Mg2+

and augment of pH leading to systemic side effects eventually,
but also enhanced the antibacterial capacity of Mg2+ by physical–
mechanical forces. As the in vitro experiment showed, the forma-
tion of 2D nanoflake on the surface effectively promoted the
antibacterial capacity of magnesium alloy, and the augment of
antibacterial capacity is positively related to the density of the
nanoflake. Meanwhile, as revealed by the SEM, in the control
group, S. aureus and E. coli presented a normal morphology
with membranal integrality. However, in the contrast, the group
treated with 2D magnesium flake, S. aureus showing concavities
on the membrane contacting directly with the nanoflakes
while the E. coli cells showed a stretched but shriveled morphol-
ogy, indicating that severe deformation of the membrane caused
by physical force contributed to the cell death of bacteria (Fig. 6).
Finally, the antibacterial performance and anti-inflammatory
effect were tested in vivo by implanting different alloy samples
into a soft issue of rats followed by injection of the bacteria.
As a result, the Mg group and the 2D Mg nanoflakes group pre-
sented similar antibacterial performance which was better
than the control group. Besides, serious inflammation was
observed in the control group and the Mg group while the group
treated with 2D nanoflakes just showed a mild inflammation
(Fig. 7)[216].



Fig. 5. Determination of the antibacterial property of functionalized MoS2. a) Structural representation of ligand 3-MoS2, ligand 7-MoS2, and ligand 8-MoS2. b) Evaluation of
abiotic oxidative stress through Ellman’s assay with 0.4 mM glutathione. All values are statistically significant versus negative control (P < 0.0001). c) ROS species
determination. All the values are statistically significant versus the without quencher group (P < 0.0001). d) Determination of intracellular ROS by fluorescent probe DCFDA.
***, P < 0.0001 vs control; ns, P＞0.05 vs control. e) Quantification of membrane depolarization of MRSA. Reprinted with permission from Simultaneous Exfoliation and
Functionalization of 2H-MoS2 by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity. Copyright (2018) American Chemical Society. [211].

Fig. 6. Antibacterial properties examination: Time-dependent antibacterial effect against a) S. aureus and b) E. coli, respectively; c) Determination of antibacterial effect
against S. aureus and E. coli after been cultivated for 3 h; d) Morphological characteristics of S. aureus and E. coli upon treatment with different samples for 3 h. Arrows
indicated the deformed morphology. *, P < 0.05 and **, P < 0.01 versus Mg group. Reproduction from Guomin Wang et al. [216].
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However, the sharped edges related mechanism of anti-
bacterial capacity was controversial, because a subsequent work
emphasized that the electron transfer between the graphene
10
surface and the bacterial membrane was responsible for the
antibacterial performance of GO, suggested that it was the surface
but not the edge of GO endowed itself the antimicrobial activity



Fig. 7. Anti-inflammation performance and potential antibacterial mechanism: a) Hematoxylin and Eosin (H&E) staining for inflammation examination at day 10 (significant
infiltration of inflammatory cells are indicated by black arrows, Scale bar = 200 mm); b) The potential antibacterial mechanism. Reproduction from [216].
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[217]. Therefore, to fully elucidate the mechanism that physical
contact destruction functions, more work was necessary for the
future.

On the one hand, because many 2D materials were demon-
strated to possess excellent performance on the conversion of
NIR laser to heat, on the other hand, because NIR lasers could dee-
ply penetrate the biological tissues with negligible damage to
healthy tissues, utilizing the photothermal conversion ability of
2D materials in the antibacterial application has been considered
as a promising antibacterial mean[202]. Inspired by the high effi-
ciency of MoS2-based nanostructures for photothermal therapy of
cancer, Zhang and co-workers fabricated a novel antibacterial
agent by integrating the chitosan (CS), magnetic MoS2, and iron
oxide nanoparticles (CFM). In this composite, MoS2 was responsi-
ble for the conversion of the NIR laser to heat to kill the bacteria.
CS was introduced for its abundance in amino groups, which is
key for nonspecifically cross-linking bacterial cells. And iron oxide
nanoparticles played an important role in bacterial enrichment
performance. As a result, they found CFM could effectively enrich
the bacteria and form CFM � bacteria aggregates within 1 min
in vitro. Then in mouse models which have subcutaneous abscess
induced by S. aureus, upon exposure to NIR laser (2 W/cm2), bacte-
ria in the infection site were quickly eliminated, indicating MoS2 in
this composite could function with biocompatibility and efficiency
for focal infection treatment in vivo through photothermal conver-
sion[218]. According to some previous studies that BP based hybrid
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materials possess better antibacterial activity compared to the bare
BP nanosheets[219,220], Aksoy et al. developed a nanocomposite
by incorporating the gold nanoparticles (Au) to BP nanosheets for
achieving an enhanced antibacterial capability of BP. As was
expected, BP/Au nanocomposites were not only showed to be more
potent in the production of heat, but also had more powerful
antibacterial capacity than the bare BP nanosheets upon irradiation
with NIR lasers[221]. This work further implies that a combination
of different 2D materials might be an easy way to achieve antibac-
terial agents with high efficiency. A multifunctional platform com-
bined with 2D graphene oxide (GO) nanosheets, polydopamine
(pDA) nanofilm, and oligopeptide, as well as porous sulfonated
polyetheretherketone (PEEK) (GO-SPEEK-BFP), was fabricated by
Wang and colleagues to overcome the issue that clinic application
of PEEK in orthopedic is always suffered from the infection. Upon
exposure to 808 nm NIR laser, GO incorporated SPEEK showed
excellent performance on photothermal conversion, which might
endow itself with antibacterial capacity. As was expected, the
growth of bacteria treated with GO-SPEEK or GO-SPEEK-BFP was
significantly inhibited, and their viability was further decreased
when exposed to 808 nm NIR laser. Meanwhile, it’s worth noting
that both in vitro and in vivo, GO-SPEEK-BFP showed great prop-
erty on osteogenic induction[39]. Besides, other 2D materials such
as metal-based nanomaterials, MoS2, Sb2Se3, etc. were also demon-
strated to be effective antibacterial agents through photothermal
conversion[222–225].



Fig. 8. The preparation process of BP-BG scaffolds and the mechanism that they kill osteosarcoma cells and induce subsequent osteogenesis. Reprinted with permission from
2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds: A Stepwise Countermeasure for Osteosarcoma [250].
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4.4. Application of 2D materials in bone cancers therapies

There are some common bone malignant tumors that are extre-
mely dangerous to patients and are very tough to handle such as
osteosarcoma, chondrosarcoma, and Ewing’s sarcoma[226–228].
Nowadays, the main methods for cancer therapy include surgical
resection, chemotherapy, radiation therapy, and emerging
immunotherapy[229–231]. However, some shortcomings still exist
between them, for instance, the surgical resection cannot achieve a
satisfactory result while tumor metastasis happened and often
causes trauma. As for radiotherapy and chemotherapy, the severely
systemic side effects with toxicity destroy the healthy organs and
tissues in patients[232–234]. Last, recurrence of cancers in some
patients who received immunotherapy due to immune escape
caused by down-regulation of tumor antigen is still a problem,
which also imposed additional financial burdens on patients
[234]. Thus, it is necessary to innovate current cancer therapies
to achieve a satisfactory method for the treatment of cancers.

Due to their intrinsic optical properties as well as loading capac-
ities endowed by their large specific surface area, 2D materials are
currently applied broadly in phototherapy for tumor therapy[235–
239]. Phototherapy includes photothermal therapy (PTT) and
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photodynamic therapy (PDT), which is an innovative cancer ther-
apy that functioned by converting the NIR light into heat with high
temperature or into reactive oxygen species (ROS) for destroying
the cancer cells respectively[240–243]. 2D materials were
employed as photothermal reagents (PTAs) in PTT[244,245]. How-
ever, in PDT, 2D materials were applied as photosensitizer (PS)
[246,247]. In recent years, a lot of studies had demonstrated that
many 2D materials including GO, TMDCs and BP, etc., could be
applied in different patterns in phototherapy for the treatment of
many kinds of tumors including bone malignant tumors, and
achieved great success. 2D materials currently could not only be
applied as PTAs or PS in phototherapy but also be employed as
the carrier for traditional PTAs or PS because of their excellent drug
loading capacities and therefore functioned in the phototherapy for
cancer treatment[65,138,223,248,249].

Here we mainly reviewed recent advances in bone malignant
tumors treated with 2D materials. Yang and colleagues developed
a novel strategy of PTT for osteosarcoma and the subsequent bone
regeneration of the bone defects caused by PTT, which a 3D scaf-
fold was fabricated by incorporating the 2D BP nanosheets for
the achievement of PTT and the subsequent phosphorus supply
from BP degradation would drive the in situ biomineralization



Fig. 9. Examination of photothermal performance in vitro and in vivo. a) Changes in temperature of BP-BG scaffolds with different BP concentrations in vitro. b) Changes in
temperature of BP-BG scaffolds with different laser power densities of NIR in vitro. c) Cell viability of Saos-2 cells upon treatment with different power densities of NIR. d)
Toxicity of BG and BP-BG scaffolds on Saos-2 cells detected by calcein AM (green fluorescence indicates live cells) and PI (red fluorescence indicates live cells). Scale
bar = 200 mm. e) Infrared thermographic photographs of the tumor-bearing nude mice post-implanted with BG and BP-BG scaffolds upon irradiation of 808 nm laser
(1 W�cm�2) for different time intervals. f) Real-time temperature change in osteosarcoma tissue corresponding to (e). g) Change of body weight of nude mice after different
treatments (n = 7, mean ± SD). h) Change of tumor volume of the mice after different treatments. i) Images of mice with xenografted osteosarcoma after different treatments
on day 14. Reprinted with permission from 2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds: A Stepwise Countermeasure for Osteosarcoma [250]. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 8). Under the irradiation with the 808 nm lasers, the BP incor-
porated group released a lot of heat and the cell viability of the BP
incorporated group was significantly decreased in a NIR power
densities dependent manner. As was expected, the volume of
tumors of osteosarcoma-bearing mice in the BP incorporated group
with irradiation, reduced obviously in a time-dependent manner
(Fig. 9)[250]. In another work lead by Wang and colleagues, based
on a strategy that ‘‘kill first, then regenerate”, a 3D scaffold con-
sisted of water/ poly(lactic-co-glycolic acid)/dichloromethane
emulsions incorporating with 2D BP nanosheets, b-tricalcium
phosphate (b-TCP), osteogenic peptides as well as doxorubicin
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hydrochloride (DOX)was fabricated for tumors ablation and regen-
eration of tumor resection-induced bone defects. In such a scaffold,
BP was applied as PTAs for PTT and DOX was for chemotherapy,
which synergistically functioned for destroying xenograft osteosar-
coma. Then, b-TCP and osteogenic peptides were employed for the
regeneration of bone defects. As a result, the temperature of the
scaffold was significantly elevated and was positively related to
the laser density, indicating the suitability of the scaffold in PTT
for tumor ablation. Subsequently, upon exposure to irradiation of
808 nm laser, the scaffold reduced cell viability in vitro and effec-
tively inhibited the growth of xenograft osteosarcoma in vivo.



Fig. 10. Preparation progress of TBGS and its application in osteosarcoma treatment[89].
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Besides, the scaffold was found to promote the osteogenic differen-
tiation of rat BMSCs in vitro and promote the in vivo bone regener-
ation of rat cranial[142].

Besides, other 2D materials were also be demonstrated to play
an important role in bone tumor therapy. For instance, the Chen
group developed a unique strategy for destroying the bone tumors
and meanwhiles repairing the bone defects based on the 2D Ti3C2

MXenes, because 2D Ti3C2 is not only highly biocompatible with
excellent photothermal-conversion property, but also capable to
promote bone reconstruction through its biodegradation products.
In their work, a multifunctional biomaterial scaffold was con-
structed by integrating the 2D Ti3C2 MXenes with a typical bioma-
terial for bone-tissue regeneration named 3D-printing bioactive
glass (BG) scaffold (designated as Ti3C2-BG scaffold or TBGS)
(Fig. 10). Under the irradiation of 808 nm laser (1.0 W cm�2), the
temperature of the scaffold was approximately increased to 60 �C
within about 150 s and the augment of temperature was in a
power densities dependent manner. As was expected, TGBS with
laser exposure significantly reduced the cell viability in vitro and
inhibited the growth of osteosarcomas in mice with high effectiv-
ity. In the contrast, the scaffold without 2D Ti3C2 hardly functioned.
Besides, the TBGS show much higher potency in promoting the
expression of the osteogenic genes including COL1, RUNX2, OPN,
and OCN of hBMSCs in vitro as well as promoting the formation
of calcified tissues in the defect in vivo[89]. In another study led
by Yang et al., a similarly favorable therapeutic effect on treating
malignant bone tumors and bone regeneration was achieved
through a 2D Nb2C MXene incorporated 3D-printing BG scaffolds
(Fig. 11)[148].

From what we reviewed above, it is obvious that it is of high
efficiency to apply 2D materials in phototherapy for bone tumors
treatment and the subsequent bone regeneration. However,
researches on the application of 2D materials in bone tumors ther-
apy are at the initial period and most of them concentrated on the
application of 2D materials in PTT for osteosarcoma treatment.
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Most studies had demonstrated that 2D materials could function
in various tumors in different ways such as act as PTAs, PS as well
as carriers for traditional PTAs and PS. Therefore, it is reasonable to
believe that the application of 2D materials in PDT or delivery of
drugs for various bone tumors would also be feasible and effective,
which would also be conducive to broaden the application of 2D
materials in bone tumors therapy.

4.5. Application in cartilage regeneration for osteoarthritis Treatment/
osteochondral repair

Osteoarthritis (OA), the most common disease in joint, is highly
associated with age and trauma. The disease is complicated and
majorly characterized by cartilage damage, eventually leading to
the disability of the joint[251,252]. The hyaline cartilage is a kind
of cartilage with the highest content in the body with capabilities
of withstanding the repetitive low-friction and providing the high-
load activities, which plays a vital role in function realization of the
joint[253]. However, damaged cartilage easily results from sports
injuries, accident traumas, or degeneration with aging, etc., which
commonly lead to pain, joint deformity, and knee functional dis-
ability[254–256]. Because of the scarcity of vascularity and poor
proliferation of chondrocytes in mature cartilage, cartilage defects
cannot be repaired by themselves[257,258]. Thus, cartilage regen-
eration is critical for restoring the capability of joints[259]. Nowa-
days, there are some common treatments for cartilage injuries, for
instance, systemic administration[260] or intra-articular injection
of drugs favorable for cartilage regeneration[261], operative treat-
ments such as abrasion arthroplasty[262], and so on[257]. How-
ever, both these methods are unsatisfactory. Firstly, because of
the highly negatively charged microenvironment of cartilage tissue
caused by a large number of proteoglycans contained in the extra-
cellular matrix (ECM) of chondrocytes, drugs with intra-articular
injection are difficult to penetrate the cartilage[263,264]. Mean-
while, due to the rapid clearance of drugs by the vasculature or



Fig. 11. Preparation progress of TBGS and its application in osteosarcoma treatment and subsequent bone regeneration. Reprinted with permission from Engineering 2D
Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration [148].
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lymphatics in the synovium, drugs administrated intra-articularly
merely have a very short retention time, severely limiting the ther-
apeutic effects[265–269]. Then, side effect resulted from systemic
administration is still a worrying problem. Last, as for the operative
treatments, the healthy cartilage might be damaged and the
wound infection might be caused during surgical procedures are
still troublesomes[257]. Cartilage regeneration engineering is cur-
rently viewed as a promising means for cartilage injury repair
[270], functioning by combining the primary chondrocytes, stem
cells, or injecting drugs favorable for growth and development of
chondrocytes with suitable scaffolds to promote the remodeling
of cartilage tissue[257].

Due to the versatility of 2D materials, the application of 2D
materials for cartilage regeneration has attracted wide attention
from researchers[255]. There are different ways for taking advan-
tage of 2D materials in cartilage regeneration. Firstly, as we stated
above, how to realize a continuous drug-releasing to obtain a
longer retention time in cartilage is one of the key factors influenc-
ing the therapeutic effect of drugs. Michael Morgen and colleagues
fabricated cationic polymeric nanoparticles for the delivery of
drugs into cartilage. Wenzhen Pan et al. designed a novel
therapeutic system that combining platelet-rich plasma (PRP),
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black phosphorus nanosheets (BPNs), and chitosan thermorespon-
sive hydrogel. In this smart system, conversion of NIR light to topi-
cal heat was induced by the BPNs, which consequently degraded
the hydrogel and eventually released the PRP into the articular cav-
ity (Fig. 12). They found that this system significantly increased the
retention time of drugs in the articular cavity and improved the
pathogenic condition of mice with rheumatoid arthritis[271]. It
was reported that shapes of multiphasic systems could be affected
by 2D nanoparticles (NPs), leading to the potential application in
controlled molecular diffusion. Based on that, and inspired by a
biological phenomenon that membrane proteins of cells func-
tioned as ion channels for controlled substances such as nutrients
into and out of cells upon response to physiological cues such as
specific ligands, Luo et al. fabricated a pH-responsive molecular
controlled release system (SJPs) by combing the 2D kaolinite NPs
and negatively charged cationic polymer with poly[2-
(dimethylamino)ethyl methacrylate] (PDMAEMA) as well as
hydrophobic poly(lauryl methacrylate) (PLMA). In this smart sys-
tem, 2D kaolinite NPs were intramolecularly attracted to each
other by oppositely charged groups grafted on their surface to
achieve a lock state, while the unlock state would be presented
because PDMAEMA polymers at low pH value would be fully



Fig. 12. Schematic illustration of the fabrication of drugs controlled-release smart system. Reprinted with permission from PRP-chitosan thermoresponsive hydrogel
combined with black phosphorus nanosheets as an injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis [271].
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protonated and lead to a strong electrostatic repulsion, eventually
achieving a pH-responsive molecular controlled release (Fig. 13)
[272]. It is worth noting that such an encouraging smart system
has great potential to be applied in the treatment of cartilage
regeneration or osteoarthritis, for instance, the upregulated
osteoarthritis markers such as matrix metalloproteinase 13
(MMP13)[273] or the high density of negative charge in the ECM
of chondrocytes[274] are excellent biological cues to achieve the
transition between the lock state and unlock state of the smart sys-
tem for controlled release of drugs. This novel system indicates a
new way to apply 2D materials for osteoarthritis treatment.

Besides, the ECM microenvironment of cartilage tissue is com-
pact and full of a negative charge, which hindered drugs with the
same negative charge to penetrate the ECM into chondrocytes
[275]. Therefore, packaging the drugs with positive 2D materials
might be a potential way for delivery of the drugs into cartilage.
At an experiment led by Li and colleagues, a nano-vehicle for treat-
ment of chronic obstructive pulmonary disease (COPD) was devel-
oped by an assembly of BP and chitosan (CS) with the decoration of
hydrophilic polyethylene glycol (PEG), in which positively charged
CS nanoparticles are responsible for directing the nano-vehicle to
the epithelium with negative charges by electrostatic interaction
while the BP functioned in promoting the release of drugs by
increasing dissociation of PEGylated CS nanospheres through
degradation of itself (Fig. 14). As a result, this nano-vehicle showed
a controlled release of loading drugs and rapid penetration ability
in vitro experiments. Besides, in vivo experiment, this nano-vehicle
presented significantly enhanced therapeutic effect toward COPD
mouse models compared with the bare drugs group[276]. Such a
strategy employed in this study seems to be feasible in osteoarthri-
tis treatment. On the one hand, as it is known that the ECM of car-
tilage is compact and is full of negative charge due to the existence
of proteoglycan, which makes it difficult for drugs to penetrate the
ECM and further enter the chondrocyte. Therefore, fabrication of
drug delivery by loading drugs on 2D materials with positive
charges might be a feasible way to deliver drugs for chondrocytes
of patients with osteoarthritis. On the other hand, we could
achieve a controllable release of drugs of osteoarthritis by fabrica-
tion of an analogous nanocarrier whose dissociation is also
determined by the degradation of BP. Meanwhile, we could also
control the degradation of BP by NIR laser to regulate the
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dissociation of the nanocarrier and the final release of drugs. Such
a way of smartly controllable release of drugs could effectively
enhance the retention time of drugs in the articular cavity. At last,
phosphates, the degradation products of BP, are raw materials
involves in osteogenesis. Therefore, it is reasonable to believe that
the application of 2D materials in a similar way would also over-
come the problem of the penetration of drugs into the cartilage
as well as the problem of retention of drugs in the articular cavity,
and eventually achieve osteoarthritis treatment.
5. Conclusions

Relative to their bulk parents, ultrathin 2D materials have ver-
satile properties such as excellent high specific surface area, elec-
trical properties, high surface reactivity, and adsorption activity
[15,19,72,277–279], making them suitable for various applications
in the field of optics, energy storage, sensor, electronic and well as
biomedicine. Besides, due to the easy accessibility of functionaliza-
tion that 2D materials could be modified easily[53], further
improving the capacities of 2D materials such as biodegradability
[280], and therefore broadening their applications.

Currently, due to their versatile properties, the application of 2D
materials in bone diseases therapy has attracted a lot of attention.
On the one hand, 2D materials could function by themselves in dif-
ferent aspects because of their intrinsic properties. For example,
because of their exceptional optical properties, 2D materials could
be employed as PTAs[281] or PS[242] in phototherapy for different
kinds of application in bone diseases therapies such as antibacte-
rial and anti-cancer through conversion of light into heat or ROS
respectively. Besides, because of the superlubricity in layered 2D
materials[176,177], they could also be used as lubricants for joint
lubrication. On the other hand, 2D materials could also be
employed as additives to improve the performance of the subject.
For instance, in BTE, 2D materials are always added to enhanced
the physicochemical properties of the bio-scaffolds. Moreover, 2D
materials could function as carriers of drugs for cancer therapy
[237,282] or BTE due to their large surface area[283,284]. Here, this
review first comprehensively summarized applications of 2D
materials for various bone diseases including BTE, osteoarthritis,
joint lubrication, infection in orthopedic implants as well as bone
tumors, which in turn revealed the versatility of 2D materials. As



Fig. 13. Examination of performance of SJPs on controlling the molecular release. (a) Schematic illustration of how SJPs functions. (b) Performance of SJPs on controlled
release of hexane. (c) Molecular transport with reversible ‘‘unlock state” and ‘‘lock state” at DCM/water interfaces. (d) Illustration of controlled RhB release from chloroform to
water upon treatment with SJPs. In DI water (blank), RhB (red) diffused quickly whereas little diffusion of RhB was observed in SJP solution of 0.5 wt% (pH = 7) after 2 h. The
pictures showed, in the aqueous phase, the addition of H+ led to fast diffusion of RhB. Reprinted with permission from Electrostatic-Driven Dynamic Jamming of 2D
Nanoparticles at Interfaces for Controlled Molecular Diffusion [272]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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different 2D materials do well in different aspects, for example,
some of them might have the optimal optical property, others
might have the largest surface area. Therefore, in the future, the
exploration of combining and taking the advantage of different
2D materials to obtain a synergetic effect might be a way to
achieve the best therapeutic effect and further broaden the appli-
cation of 2D materials in biomedicine.

However, there are still some problems that need to be noted
and solved. First of all, the toxicity of the 2D materials themselves
is still a worrying problem. For example, BP is thought to be of high
compatibility because it is unstable in physiological conditions and
is easy to degrade into phosphate which is harmless to cells[164].
However, recently, Shao et al. found that 2D BP could target and
bind to Polo Like Kinase 1 (PLK1) in centrosome which is crucial
for the cell cycle. Upon binding with 2D BP, the activity of PLK1
would be inhibited and then the cell cycle would be blocked in
the M phase, finally leading to cell death[285]. This finding reveal-
ing that 2D BP may be a potentially effective drug for tumor treat-
ment. Meanwhile, it also reminds us to be cautious when the
application of 2D BP in human diseases treatment. On the one
hand, it might need more experiments in vitro and in vivo to
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explore a concentration range with less cytotoxicity before appli-
cation of 2D BP in treating diseases. Besides, whether there exits
similarly intrinsic cytotoxicity of other 2D materials when applied
in biomedicines also needs to be further elucidated since some 2D
materials were able to interact with biological components and
therefore lead to toxicity. Overall, we should be cautious and try
our best to reduce the cytotoxicity of 2D materials when employed
in bone therapies, which might be achieved via the innovation of
functionalization of 2D materials. On the other hand, the finding
of intrinsic cytotoxicity of 2D BP hints that 2D materials have sim-
ilar intrinsic cytotoxicity might be more powerful in the treatment
of bone tumor or infection of orthopedic implants, which would
make full use of the advantages and effectively avoid the side
effects.

Another problem worth noting is that researchers should do
their best to reduce the off-target effect when 2D materials func-
tion destructively. For example, theoretically, those strategies
combining thermoresponsive hydrogel and 2D materials with
excellent property of photothermal conversion is a perfect way
to achieve control release of drugs. And such strategies are espe-
cially suitable for the treatment of osteoarthritis because they



Fig. 14. Schematic illustration of the preparation of PEG@CS/BPQDs-AM NPs as well as their application in COPD. Reprinted with permission from Mediated Drug Release
from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease [276].
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could achieve a longer retention time of drugs in the articular cav-
ity. However, a problem may be ignored by researchers who
employ such strategies to treat osteoarthritis. Because in such a
strategy, another application of 2D materials is the destruction of
the inflammatory tissue through the production of high tempera-
ture and ROS. Now that the high temperature could damage the
inflammatory tissue, it is of the high possibility that the ambient
normal tissues such as the cartilage and meniscus might be also
destroyed by the high temperature. Therefore, it was necessary
for researchers who apply this kind of strategies to afford evidence
that other normally adjacent tissues are not affected by the high
temperature or ROS derived from the process of photothermal con-
version of 2D materials. And functionalization of 2D materials with
the ability to target specific tissues or cells such as modifying them
with specific antibodies or functionalizing them with polymers to
respond to some special environmental clues including tempera-
tures, light, and pH[286] is a potential way to solve this problem.
For instance, sodium alginate (SA) is a kind of polymer that could
be used to covalently modified 2D materials to achieve intelli-
gently controlled release by responding to the environmental pH.
Drugs loaded in the SA-functionalized 2D materials were released
lowly in physiological conditions but released fast in the acidulous
tumor cell microenvironment[287].

We believe, with the efforts of exploring the advantages of 2D
materials suitable for application in bone therapies and improve-
ment in their use safety, the application of 2D materials in bone
diseases would be further promoted and the disease treatments
would be further benefited too.
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